
72 Int. J. Metadata, Semantics and Ontologies, Vol. 4, Nos. 1/2, 2009

Copyright © 2009 Inderscience Enterprises Ltd.

An ontology-driven system architecture for
precision agriculture applications

Christos Goumopoulos* and Achilles D. Kameas
Computer Technology Institute,
Designing Ambient Information Systems Group,
N. Kazantzaki, 26500 Rio Patras, Hellas, Greece
E-mail: goumop@cti.gr
E-mail: kameas@cti.gr
*Corresponding author

Alan Cassells
Department οf Zoology, Ecology and Plant Science,
National University of Ireland Cork,
Distillery Fields, North Mall, Cork, Ireland
E-mail: a.cassells@ucc.ie

Abstract: Our research has been performed in the context of the EU-funded R&D project
PLANTS. In this paper, we describe an ontology-driven architecture for developing systems that
can be used in precision agriculture applications. Central to our approach is the use of an
ontology, which views plants and associated computation as an integral part and allows the
interaction of plants and artefacts in the form of synergistic mixed societies. PLANTS ontology
sets up a conceptual framework that combines the knowledge about sensors, actuators and other
domain concepts available, on the one hand, and the biological studies about plant stressing
and sensing mechanisms and consequent plant behaviour, on the other hand, to make plants a
proactive component of agricultural systems.

Keywords: ontology; system architecture; proactive computing; precision agriculture.

Reference to this paper should be made as follows: Goumopoulos, C., Kameas, A.D. and
Cassells, A. (2009) ‘An ontology-driven system architecture for precision agriculture
applications’, Int. J. Metadata Semantics and Ontologies, Vol. 4, Nos. 1/2, pp.72–84.

Biographical notes: Christos Goumopoulos received his diploma and PhD Degrees in Computer
Science from University of Patras, Hellas. Currently he is a Cooperating Professor in the Hellenic
Open University and serves as a term appointed Assistant Professor in the University of Patras
and as teaching staff in the Technological Educational Institute of Patras. His research interests
include software engineering, programming languages and compilers, resource scheduling,
distributed computing, ubiquitous computing and awareness management, middleware and
ontological knowledge representation. He has more than 30 publications to his credit in
international journals, books and conferences in these areas.

Achilles D. Kameas is an Assistant Professor with the Hellenic Open University, where he
teaches software design and engineering. He is also R&D manager with CTI, where he is the
head of Research Unit 3 and the founder of DAISy group (http://daisy.cti.gr). He has published
over 50 papers on books, journals and international refereed conferences, co-edited more than
five books and participated in several conference and workshop committees. His current research
interests include architectures, ontologies and tools for engineering of ubiquitous computing
applications. He is a voting member of IEEE, IEEE CS, ACM and ACM SIGCHI.

Alan Cassells received his BSc and MSc from the National University of Ireland Dublin.
He undertook postgraduate research as the Universities of Glasgow and Wales (UK) and received
his PhD from the latter. He was a postdoc at the Universities of Warwick and Oxford, Lecturer in
the University of London (UK) and Professor of Botany at the National University of Ireland
Cork from 1979 until his retirement in 2007. He was Managing Director of Plant Biotechnology
(UCC) Ltd. for ten years. He has edited/co-edited seven books and published over 100 papers in
plant pathology and plant biotechnology.

 An ontology-driven system architecture for precision agriculture applications 73

1 Introduction

Precision agriculture is an agricultural concept relying on
the existence of in-field variability across an array of
cropping systems (Koch and Khosla, 2003). Thanks to
developments in the field of wireless sensor networks as
well as miniaturisation of sensor systems, new trends have
emerged in the area of precision agriculture. Wireless
networks allow the deployment of sensing systems and
actuation mechanisms at a much finer level of granularity,
and a more automated implementation than has been
possible before. Sensors and actuators can be used to
precisely control for example the concentration of fertiliser
in soil based on information gathered from the soil itself,
the ambient temperature, and other environmental factors.
Incorporating feedback into the system through the use of
sensors, actuators, and adaptation algorithms will allow a
more fine-grained analysis that could adjust flow rate
and duration in a way that is informed by local conditions.
One can imagine the use of such precise information in
particularly sensitive high-value crops such as wine grapes,
citrus fruits and strawberries.

At present, the information gathered by sensor networks
deployed in a field are mainly used for monitoring and
reporting on the status of the crops (Burrell et al., 2004;
Zhang et al., 2004). However, agricultural environments
make a good candidate for using proactive-computing
approaches for applications, which require a faster
than human response time or which require precise,
time-consuming optimisation. For example, irrigation is a
major issue in many farms. An ideal proactive system would
optimise water usage in different areas of the farm by using
the water available – particularly where water is a limited,
shared resource. Being able to water plants more selectively
and precisely on the basis of individual plant requirements
and the water available, would reduce water wastage.
Frost detection and pest detection are other examples of
applications in agriculture that would benefit from proactive
approaches.

Our research has been performed in the context of the
EU-funded R&D project PLANTS (Cassells et al., 2006).
In this paper, we describe an ontology-driven architecture
for developing hybrid systems that can be used in precision
agriculture applications. A hybrid system consists of
various entities including software components, hardware
components (sensors, actuators and controllers), datastores
(knowledge base, raw data, metadata), biological elements
(plants) and environmental context. By positioning sensors
around particular plants, the delivered technology is capable
of reacting (via actuators) to stimuli (perceived via sensor
networks), aiming to maintain an optimised plant state and
support efficient plant growth.

The remainder of this paper is organised as follows.
Section 2 presents the background concepts related to
hybrid systems. We explain the concept of mixed societies
of communicating plants and artefacts, we identify the
analogy with a context management process at a high-level

system view and we give an illustrative example of the
interactions between the elements of a mixed society.
Section 3 discusses the PLANTS ontology requirements
analysis and design. The main categories of knowledge that
must be represented in the ontology are specified.
The ontology is organised hierarchically into the PLANTS
Core Ontology (encodes general knowledge) and the
PLANTS Higher Ontology (encodes application-specific
knowledge). Section 4 presents the core modules of the
distributed management system, namely PLANTS system.
First, the architecture is outlined and then the basic modules
are described. A detailed example application from the
precision agriculture domain is given in Section 5. Related
work is discussed in Section 6 and finally the conclusions
and our future work plans are given in Section 7.

2 Background

2.1 Mixed societies of communicating plants
and artefacts

It is well known that plants show visible signs (e.g., leaf
substance and colour), measurable signs (e.g., heat and
chlorophyll irradiance) and emit volatiles (e.g., stress
chemicals) that can be measured. These are all elements of
plant language that we can perceive through technology
(Goumopoulos et al., 2004). Accordingly, the concept of
‘communicating plant’ emerges, where a plant, augmented
with sensors and actuators, provides a report on the specific
plant status and directly addresses the plant’s requirements.

The communicating plant fits then well within the vision
of Ubiquitous Computing (Weiser, 1991) where the virtual
(computing) space will be seamlessly integrated with our
physical environment. By giving plants a ‘digital self’,
plants can communicate their properties in digital space.
Furthermore, regarding plants as virtual ‘components’,
which can communicate with other artefacts in the digital
space, we can shape mixed societies of them. From an
engineering perspective, a mixed society of communicating
plants and artefacts can be regarded as a multi-layered,
hierarchical distributed system, which will globally manage
the resources of the society, its function(s) and its
interaction with the environment.

In Figure 1, the basic elements of such a society are
shown. The components ePlant, eIrrigation, eFertiliser,
etc., depicted in the scheme represent in the digital space the
corresponding physical or tangible entities (hosting nodes).
These components are generalised by the term eEntity.
Thus, in principle, an entity in the physical space becomes
an eEntity in the virtual space by the superimposition
of a technological layer consisting of hardware/software
modules that enable it to sense the environment
(using sensors), act upon it (using actuators), store and
process data locally and communicate with other eEntities
or software programmes (e.g., tools) via wireless or internet
communication links.

74 C. Goumopoulos et al.

Figure 1 Basic elements identified in mixed societies of communicating plants and artefacts (see online version for colours)

An ePlant component, in particular, may represent
the digital self either of a specific plant or a group of plants
(a group may be defined in terms of a specific plant species
or in terms of plant vicinity, a number of plants in a
geographical region) and is responsible for the back-end
computation with respect to the sensor network computing.
Through a software layer, ePlant communicates with the
sensor network, implements a decision-making scheme for
assessing plant states and alarms and handles the interaction
with other eEntities.

eEntities that represent domain-specific objects
with the capabilities of information processing and
exchange are also called Artefacts or eGadgets.
These artefacts have the capability of communicating
with other artefacts based on local networks, as well as
accessing or exchanging information at a distance via global
networks. In our case, artefacts may represent expressive
devices (speakers, displays, etc.), resource-providing
devices (e.g., lamps, irrigation/fertilisation/shading system)
or any other everyday object (e.g., cell phone, camera).

Sensor systems range from standalone sensor devices to
wireless sensor networks monitoring micro-climates in a
crop field. Standalone sensor devices may be shared among
a number of ePlants (e.g., owing to cost constraints) so
that the context needs to be determined. Wireless sensor
networks are based on hardware platforms like Mica2,
Mica2Dot and Intel systems, called motes (Bellis et al.,
2005). On the other hand, the actuator systems will allow
the plant to influence the environment that it resides in.

The communication in the distributed system is divided
into two levels: sensory communication, which refers to the
communication between an eEntity hosting node and its
sensor/actuator systems, and the interaction communication,
which refers to the communication between the eEntities.
In that way, we separate the interaction services from the
context of application.

The interaction of artefacts and ePlants entails the
triggering of autonomous local decision-making and
global decision-making procedures. The term local
decision-making is used when a node can reach a decision

 An ontology-driven system architecture for precision agriculture applications 75

based on local knowledge, i.e., does not need to interact
with other nodes in the distributed system. This is in
contrast to global decision-making where the nodes of the
distributed system communicate and exchange data that can
be used to perceive a global state and trigger a global
decision. For example, upon determining the local state of a
plant, a decision may be required for an action to be
followed. In the case of an artefact (e.g., a lamp or valve),
the local decision-making (or resource management)
mechanism resolves conflicts when multiple ePlants
request a common resource (e.g., light or water).
Distributed mechanisms can also be considered to alleviate
similar situations, when ePlants and related artefacts are
coordinated for detecting/maintaining a global state in the
context of a group of distributed nodes.

2.2 Context management process

At a high level, the process performed by the distributed
system discussed in Figure 1 can be viewed as a
plant/environmental context management process. We
model this process as a measurement-translation-reasoning-
actuation control cycle (Figure 2). A mechanism
for low-level context acquisition, which reads plant/
environmental signals from sensors, starts this cycle.
Signals range from selected electromagnetic wavelengths
through to volatile organic molecules. This information is
probably not initially in a format that can be used by the
system to make decisions or reach a conclusion. In a second
phase, the signals are interpreted and high-level context
information is derived. For example, temperature and soil
moisture sensors return an analogue signal (voltage value),
which must be then converted, after a calibration phase, to a
digital format. This signal conditioning phase is usually
performed within the motes using specialised Analogue to
Digital conversion circuitry, implemented in such a way as
to optimise both network data throughput and system
battery life, by avoiding unnecessary send/receive messages.
A mote typically contains a microcontroller equipped with
in-system memory and can be programmed to handle
analogue to digital conversion of sensor data. More details
on this specialised process may be found in Bellis et al.
(2005).

Aggregation of context is also possible, meaning that
semantically richer information may be derived based on the
fusion of several measurements that come from different
homogeneous or heterogeneous sensors. The determination
of photo-oxidative stress, for example, requires monitoring
of chlorophyll fluorescence in conjunction with ambient
light level signals so as to adjust supplementary light
levels. As another example, the determination of water
stress requires the monitoring of a plant’s leaf temperature,
the ambient temperature and the soil moisture content.
The aggregation of context is an operation that is
performed at the higher levels of the system, usually
at the hosting node.

Figure 2 Plant/environmental context management process

Having acquired the necessary context, we are in a position
to assess the state of the plant and decide an appropriate
response activation. Adopting the definition from Artificial
Intelligence, a state is a logical proposition defined over
a set of context measurements (Russell and Norvig, 2003).
This state assessment will be based on a set of rules,
which are either obtained as part of a time-consuming and
labour-intensive manual process, or as part of a more
advanced scheme by utilising learning capabilities within
the system. The low (sensor) and high (fused) level data,
their interpretation and the decision-making rules are
encoded in an ontology.

The reaction may be as simple as to turn on a light,
or to send a message to the user, or a composite one such as
a request to add water directly to the soil in the pot in case
of drought stress, or as spraying mist in case of heat stress.
This means that the system has to differentiate between the
two kinds of water stress and evaluate the appropriate
response. Such a decision may be based on local context
or may require context from external sources as well,
e.g., a weather station supporting prediction of plant disease
spreading.

2.3 An interaction example

In our approach, an application is realised through the
cooperation of nodes of the distributed system in the form of
established logical communication links between services
and capabilities offered by the artefacts and the states
and behaviours inferred from the plants (in each case
services/states are provided through access points called
plugs). The plug/synapse model provides a conceptual
abstraction that allows the user to describe mixed society
applications (Drossos et al., 2007). To achieve collective
desired functionality, one forms synapses by associating
compatible plugs, thus composing applications using
eGadgets and ePlants as components. The use of high-level

76 C. Goumopoulos et al.

abstractions, for expressing such associations, allows the
flexible configuration and reconfiguration of mixed society
applications with the use of appropriate editing tools.

In Figure 3, we depict a simple mixed society of an
ePlant associated with an eGadget (eLamp), so that when
the chlorophyll fluorescence signal of the plant is below a
certain level, implying a photo-oxidative stress situation,
the light of the lamp must be turned on to a specific level of
luminosity, until chlorophyll fluorescence signals indicate
optimal photosynthetic efficiency again. A synapse has
been formed between the ‘photo-oxidative stress’ plug of
the ePlant and the ‘lightswitch’ plug of the eLamp.
The interaction module that implements the plug/synapse
model is compatible between the two components and thus
their interaction is feasible.

Figure 3 An example of ePlant/eGadget interaction (see online
version for colours)

In step 1, the biosensor/bioactuator network transforms
selected plant (chlorophyll fluorescence) or other
environmental (ambient light intensity) signals into digital
signals. In step 2, ePlant’s I/O Unit reads the digital signals
(sensory communication), which will then be interpreted
to a high-level unit of information, for instance, to an
aggregated composite signal, and this information
is transferred to the PLANTS system, which acts as a
middleware (ePlantOS). In step 3, the context received
by the middleware is applied to the rules encoded
in the ontology so that a state of the plant is determined.
Then, the decision for an action may come in the form of a
command or a request for a service. The ontology of
the ePlantOS may specify, for example, the luminosity of
the requested light, based on the plant species at hand.
A new context type that is not specified in the current
ontology will trigger an update of the ontology before it can
be used into a decision-making rule. In step 4, the system
passes the information to the connected eGadget through
the established logical channel (synapse). The connectivity
and wireless communication layers implement the
lower layers of the network stack. Finally, in steps 5–7,
the middleware of the eGadget receives the information
and acts upon the eGadget by using the eGadget I/O unit

that in turn activates an actuator through the sensor/actuator
network.

3 PLANTS ontology

3.1 Requirements

The distributed management system that governs
plant/artefact societies is closely bound to knowledge
that must be presented and managed. The knowledge that
must be represented can be divided into the following
categories:

I Mixed societies conceptualisation

According to Uschold and Gruninger (1996), an ontology
is a tool that can conceptualise a world view by capturing
general knowledge and providing basic notions and
concepts for basic terms. In the same way, we turn to
ontologies to conceptualise the terms of mixed societies as
to enable the communication among ePlants and eGadgets.
For a feasible communication among ePlants and eGadgets,
a common language and a common perception of their
world is required. The terms of this common language as
well as the basic concepts of mixed societies are described
in the PLANTS ontology. Therefore, the PLANTS ontology
contains the description of the semantics of the basic terms,
such as: eGadget, ePlant, Plug, Synapse, Sensor, Actuator
and bioGadgetWorld (denotes a mixed society), and the
definition of the relations among them.

II Plant characterisation

One of the main objectives is to study plant eco-systems
to understand sensing and communication mechanisms
that will be used as models for specification of
plant–artefact interfacing mechanisms. The knowledge
emerged from these studies can be divided into various
categories.

a Knowledge regarding the plant itself. In this category,
knowledge such as the name and the species of the
plant is described. Additionally, this category contains
knowledge about the growth and the development
stages of plants.

b Knowledge regarding plant parameters being
monitored by sensors. This category contains
information about the available sensors that can
monitor the plant parameters as well as relative
knowledge like the range of values, the threshold values
and the interpretation of the aforementioned values.

c Knowledge regarding the implied state of plants.
This category contains information relevant to the
plant stressing and sensing mechanisms and the signals
that plants perceive and send to the environment.
Specifically, the possible states of a plant implied
by its parameters monitored by sensors are part of this
knowledge. For example, the representation of stresses,
like the water stress, diseases and symptoms, belongs to
this category of knowledge.

 An ontology-driven system architecture for precision agriculture applications 77

d Knowledge regarding environmental parameters.
The knowledge about the environmental parameters
that we can measure and monitor is essential to define
the state of a plant. For example, parameters like the
temperature, the humidity, CO2, the light and the soil
moisture play a major role. The description of these
parameters, their range and threshold values are also
represented.

III Sensor and actuator systems characterisation

The sensors and the actuators play a crucial role in precision
agriculture applications. In particular, the use of sensors
requires a description that specifies their type, the parameter
they measure, the range of their values as well as their
sensitivity and accuracy. Because we may use different
sensors for the same plant (or environmental) parameter,
we design an abstract structure about sensors and using an
intermediate interpretation connect their outputs to specific
parameters. This intermediate interpretation allows the
interfacing with both existing and future sensor systems
when these become available.

IV Rules for decision-making

This category refers to the knowledge that supports the
decision-making process. This knowledge is represented
as a set of rules, which are used for various decisions.
We mention below some of them.

a Sensors. A design principle of our approach is to
abstract the system from the real sensors that we are
using. Specifically, if we assume that a sensor
measuring the temperature provides to the system a
value within a specific range, we can use any available
sensor and with a set of rules we can calculate the
value that the system recognises from the sensor’s
outputs.

b Diagnosis of the plant state. There is a need for a
set of rules that will take into account both plant and
environmental parameters and the description of a plant
to diagnose a plant’s state.

c Local decision-making. The local decision-making is
based on a plant’s state and its description and
determines the possible actions of an ePlant, like the
request for a resource. Correspondingly, similar rules
will support the decision-making of an eGadget to
select a policy for the resource management.

d Global decision-making process. These rules are
similar to the rules used by the local decision-making
process that defines the reaction of an eEntity.
The main difference is that the rules of the global
decision-making process have to take into account
the states of other eEntities and their possible
reactions. The rules that are activated in the global
decision-making process are related mainly to
user-defined policies.

3.2 Design

The PLANTS ontology is designed so that it enables the
semantically meaningful interaction between plants and
artefacts via the conceptualisation of plants domain
knowledge. The PLANTS ontology thus represents the
necessary knowledge to meet system requirements and
support its functionalities.

Since the interoperability among system components
(ePlants/eGadgets) is based on their ontologies, the
existence of different ontologies could result in inefficient
interoperability. An awkward solution to this issue could be
the merging of all existing ontologies into a global one that
would inevitably result into a very large knowledge base.
This solution is undesirable for two reasons: first, it does not
respect the limited memory capabilities of the artefacts,
and second, it requires the continuous synchronisation
of all eEntities. Another solution could be the use of a
client/server model where all eEntity ontologies are
stored centrally and each eEntity can have access to it.
This solution conflicts, however, with the autonomous
nature of system components.

We designed the PLANTS ontology, keeping in mind
the design criteria proposed by Gruber (1993) for efficient
developing of ontologies:

• Maximum monotonic extensibility: new general or
specialised terms can be included in the ontology in
such a way that it does not require the revision of
existing definitions.

• Clarity: terms that are not similar (common-sense
terms vs. specialised domain ontologies) are placed
in different taxonomies.

According to this, the PLANTS ontology is divided into
the following two different layers: the PLANTS Core
Ontology (PLANTS-CO) and the PLANTS Higher Ontology
(PLANTS-HO). The solution that we propose allows each
eEntity to have a different ontology with the condition that
all ontologies will be based on a common vocabulary.
Specifically, the PLANTS Core Ontology will contain the
common vocabulary, and the PLANTS Higher Ontology
will represent eEntity-specific knowledge using concepts
represented into PLANTS-CO.

Cranefield and Purvis (1999) proposed using a
subset of the Unified Modelling Language (UML)
(Fowler and Scott, 1999) together with its associated Object
Constraint Language (OCL) for representing ontologies.
In the ontology modelling diagrams presented in this paper,
we assume the following conventions:

• ontology classification hierarchy will be expressed by
UML generalisation, represented by lines with hollow
arrow heads pointing to the super class

• class properties will be presented by UML aggregation,
an association with a diamond at the aggregate end of
the link.

78 C. Goumopoulos et al.

3.3 PLANTS Core Ontology (PLANTS-CO)

The PLANTS-CO represents the common language among
eEntities, thus it has to contain all the semantic description
of the basic concepts of mixed societies and their
inter-relations. All eEntities share the same PLANTS-CO.
A key requirement of the PLANTS-CO is to contain only

the indispensable semantics for the interoperability of
eEntities to be very small and even eEntities with limited
memory capacity may store it. The PLANTS-CO is static
and cannot be changed either by an eEntity manufacturer or
by a user. In Figure 4, a UML representation of the
PLANTS-CO basic classes and their inter-relations
is shown.

Figure 4 PLANTS-CO: basic classes and their inter-relations

In the PLANTS ontology, an artefact will be represented
as a class, eGadget, which has a number of properties.
These properties are divided into two categories: the first
one contains the physical properties, which describe the
eGadget as a tangible object; the second one contains
the digital properties, which manifest the digital self of the
eGadget and the plugs owned by the eGadget and expose its
services.

The ePlant concept will be represented as another class
with its properties. Additionally, the PLANTS ontology will
describe the digital properties of ePlant, such as its plugs.

The notion of Plug will be represented in the PLANTS
ontology as another class. From the user’s perspective,
plugs make visible the entities’ properties, capabilities and
services to people and to other entities. Plug cardinality is
the maximum number of synapses that the plug can
participate-in and plug availability denotes whether the plug
can participate in another synapse. Plug-availability is
determined based on plug-cardinality and the number of

existing connections a plug has. The Plug class is divided
into two disjoint subclasses: the TPlug and the SPlug.
The TPlug describes the physical properties of the object
that is used as an eGadget or the plant that is used as an
ePlant and lists all the eEntity’s Plugs and Synapses; there is
a cardinality restriction that an eEntity must have exactly
one TPlug. On the other hand, an SPlug represents the
eEntity properties, capabilities and services; an eEntity has
exactly one SPlug per service offered and thus can have an
arbitrary number of SPlugs. SPlugs are characterised by
their service type, which describes the type of the service
offered (e.g., ‘light’, ‘temperature’, etc.).

The Synapse class represents a synapse among two
plugs (for the plug/synapse logic see the example in
Section 2.3). A synapse may only appear among two
SPlugs. The cardinality restriction that stands for a synapse
is that it represents the connection among only two SPlugs.
For each SPlug that participates in a synapse, a special role
will be declared through PLANTS ontology.

 An ontology-driven system architecture for precision agriculture applications 79

With the bioGW (bioGadgetWorld) class, the PLANTS
ontology describes the mixed societies that are created.
The bioGW properties represent the eGadgets and the
ePlants contained in a bioGW and the synapses that
compose it. There are two cardinality constraints: first,
a bioGW must contain at least two eEntities, and second,
at least a synapse must exist between their plugs.

The sensors and the actuators play a significant role in
the targeted application domain, especially with respect to
the ePlant concept, thus we incorporate into the PLANTS
ontology the classes Sensor and Actuator. These classes are
special cases of the general class Device. For instance,
a description of sensors defining their type, their
measurement range and accuracy is provided.

We have added the concepts Parameter and PlantState
and we defined that an ePlant may have parameters and
states. The concept Parameter is further classified into two
concepts: the Plants Parameters and the Environmental
Parameters. Each Parameter has a number of properties,
like minimum value, maximum value, default value,
the type of its value (e.g., integer, float, Boolean, etc.).
Additionally, there is a relation between a parameter and the
sensor that measures it. Both the classes ‘Plants Parameters’
and ‘Environmental Parameters’ are divided into subclasses
that define specific parameters. In Figure 5, we illustrate
examples of these classes.

Figure 5 PLANTS-CO: Subclasses of concept ‘Parameter’

To represent the various plant states, the PLANTS-CO
contains the concept ‘PlantState’; a state may be activated
and if it is activated we may use an activation level
to further define the state of an ePlant. In Figure 6,
we illustrate subclasses of the PlantState.

Figure 6 PLANTS-CO: Subclasses of concept ‘PlantState’

3.4 PLANTS Higher Ontology (PLANTS-HO)

The PLANTS-HO represents both the description of an
eEntity and its acquired knowledge. These descriptions
follow the definitions contained in the PLANTS-CO.
Specifically, the knowledge stored into the PLANTS-HO is
represented as instances of the classes defined into the
PLANTS-CO. For example, the PLANTS-CO contains
the definition of the concept SPlug, while the PLANTS-HO
contains the description of a specific SPlug represented
as an instance of the concept SPlug. Consequently, the
PLANTS-HO is not a standalone ontology, as it does not
contain the definition of its concepts and their relations.

Since the PLANTS-HO represents the private
knowledge of each eEntity, it is different for each eEntity.
Contrary to PLANTS-CO, which size is required to be small
enough, the size of PLANTS-HO will depend only on
eEntity’s memory capacity. Apparently, PLANTS-HO is not
static and it can change over time without causing
complications to plants–artefacts communication. To reflect
the fact that PLANTS-HO contains both static information
about the eEntity and dynamic information emerged from its
knowledge and use, PLANTS-HO is divided into the
PLANTS-HO-static and the PLANTS-HO-volatile.

The PLANTS-HO-static represents the description
of an eEntity containing information about the eEntity
plugs, its sensors and actuators, its parameters and its
states, as well as its physical characteristics. For example,
the PLANTS-HO-static of the ‘eStrawberry’ ePlant
contains the knowledge about the species of ePlant
(e.g., ‘strawberry’), its parameters (e.g., ‘AvgTemp’ and
‘AmbientAvgTemp’), its state (e.g., ‘DroughtStress’) and its
SPlug (e.g., ‘Need_Irrigation’).

On the other hand, the PLANTS-HO-volatile of an
eEntity contains information derived from its use and
acquired knowledge. Specifically, it describes the synapses

80 C. Goumopoulos et al.

to which the eEntity plugs are connected to, the applications
to which it takes part, as well as information about the
capabilities of other eEntities that has acquainted through
communication. The PLANTS-HO-volatile is updated
during the eEntity’s various activities, like the establishment
of a new synapse.

4 PLANTS system architecture

The deployment of mixed societies is supported by
the PLANTS system whose architecture is composed
of a few basic modules that are briefly explained in this
section. The outline of the system architecture is shown
in Figure 7.

Figure 7 System architecture outline

The Process Manager is the coordinator module of the
system and the main function of this module is to monitor
and execute the reaction rules defined by the supported
applications. These rules define how and when the
infrastructure should react to changes in the environment.
The Hardware State Manager maintains a repository of the
hardware environment (sensors/actuators) inside PLANTS
system reflecting at each particular moment the state of
the hardware. The Interaction module implements the
interaction scheme between plants and artefacts, in the
form of the Plug/Synapse model. The Peer-to-Peer
Communication Module is responsible for application-level
communication and interaction between the various eEntity
nodes. This module implements algorithms and protocols
for wireless, connectionless communication (using the
802.11 b/g protocol) as well as mechanisms for internal
diffusion of the information exchanged.

The Ontology Manager module has been defined for the
manipulation of the knowledge represented into the
PLANTS ontology and to provide the other modules of the
system with parts of this knowledge with a level of
abstraction. This means that only the Ontology Manager
needs to understand PLANTS Ontology and be able to
use it; all other system modules can query the Ontology
Manager (through the Process Manager) for the information
that they need without any knowledge about the ontology
language and its structure. Therefore, any changes that may
be done to the PLANTS Ontology affect only the Ontology
Manager and the rest of the system is isolated from them.
The Ontology Manager provides methods that query

PLANTS ontology for the definition of specific concepts,
and for the existing instances of specific concepts, like the
environmental parameters. The Ontology Manager is also
responsible for the addition of knowledge into the PLANTS
ontology. For example, when a new Synapse is established
between two Plugs, the relevant knowledge must be added
to the PLANTS ontology.

The Rule Manager is the mechanism that manages
the rule base of an eEntity, and its basic functionality
is to provide to the other modules the rules that define an
eEntity’s logical operation. The basic operations of the Rule
Manager are to query about the rules of an eEntity and to
update them. For the initialisation of the decision-making
process apart from the rules, the initial facts are necessary
that represent low-level environmental/plant context sensor
measurements or inferred plant states. In this respect, the
Rule Manager is also responsible for the creation of the
initial facts of a specific eEntity. For example, an initial
fact is the definition of the existence of the eEntity with
its specific parameters, states and SPlugs (reactions) that
participate in its rules. To create this initial fact, the Rule
Manager needs to have knowledge about the eEntity that is
stored in the PLANTS-HO-static. For this, it queries the
Ontology Manager through the Process Manager for any
information that it needs, like what are the parameters, the
states and the SPlugs of the eEntity.

The Inference Engine is the module of the
system architecture that supports the decision-making
process. This module exploits the Jess rule engine (Java
Expert System Shell) (http://herzberg.ca.sandia.gov/jess/).
The execution of this module is started based on the
initial facts (defined by the Rule Manager from knowledge
emerged from the PLANTS ontology through the
Ontology Manager) and the rules stored in the rule base.
The Inference Engine module is informed for all the
changes of parameters values from sensor measurements
through the Hardware State Manager. When the Inference
Engine is informed for such a change, it runs all its rules.
When a rule is activated, the Inference Engine informs for
the activation of this rule and for the knowledge that is
inferred the Process Manager that is responsible to transfer
this knowledge to any module that needs it.

Regarding the Rule Base, currently the rules are stored
in a file in Jess format and the concepts that appear are
emerged from the PLANTS ontology. This is an approach
of building rules on top of ontologies. Additionally, we have
also stored the rules in a simple XML-like format that we
have designed targeting to a simpler manipulation of rules
from various tools. Our target is to use the Semantic
Web Rule Language (http://www.w3.org/Submission/2004/
SUBM-SWRL-20040521/) for the representation of the
rules, which is an other approach that specifies an ontology
for rule syntax.

The specification of the PLANTS ontology was
performed using the Protégé ontology development tool
(http://protege.stanford.edu/) based on the OWL standard
language.

 An ontology-driven system architecture for precision agriculture applications 81

5 Example application

The example application described in this section is
composed of a strawberry plant where the plant
is controlling irrigation and supplementary light. Irrigation
is applied according to the specific requirements of the
plants in different parts of the crop array, thus illustrating
the precision delivery of agricultural inputs.

5.1 Plant/environmental parameters

The plant/environmental parameters explored for the
application development are: Plants’ leaf Temperature
(PT), Chlorophyll Fluorescence (CF), Ambient Temperature
(AT), Ambient Light (AL) and Soil Moisture (SM).
For each signal, a different type of sensor is required.
Table 1 summarises the signals and the corresponding
sensors used as well as the associated knowledge that will
be stored in the PLANTS ontology for supporting the
monitoring and decision-making process.

Table 1 Plant/environmental signals and sensors

Signal
Measuring
sensor State assessment Possible actions

CF PAM meter1 Photo-oxidative
stress;
photosynthetic
efficiency

Light control;
estimate/adapt threshold
values for providing
input resources

PT Thermistor Drought stress;
heat stress

Irrigation/misting

SM Probe EC-102 Drought stress Irrigation
AT Thermistor
AL PAR meter3 Photo-oxidative

stress
Light control

1Junior PAM, Gademann Instruments:
http://www.gademann.com/
2ECHO probe model EC-10:
http://www.ech2o.com/specs.html
3Skye SKP215 Quantum Sensor:
http://www.alliance-technologies.net

Heat stress can occur independently of water stress when
the ambient environmental temperature gets very high and
plant transpiration cannot maintain leaf cooling. Therefore,
if the plant has adequate water (determined by the SM
probe) but the plant temperature is high this means that it is
heat-stressed and requires misting to cool it. However, if the
temperature is high and the moisture content low, then pot
irrigation is required. The CF and AL parameters are used to
determine photo-oxidative stress and adjust supplementary
light.

5.2 Prototype setup and evaluation

The prototype setup consists of an array of 96 plants placed
in a glasshouse, arranged in an array of 12 by 8. The setup
consists of four different zones: Left-Edge (LE), Right-Edge
(RE), Left-Centre (LC), Right-Centre (RC) and also one
zone specified for misting, which coincides with the RC

zone. The setup integrates the thermistors and soil moisture
probes into one system that can irrigate when required and
also determine when to stop the irrigation. This deployment
takes into account differences in the location of the plants in
the overall area and will allow for independent irrigation
of edge or centre zone plants as required. Each zone
can be controlled using individual solenoids. Misting can
be applied only to the RC owing to infrastructure
limitations.

A total of ten motes are required to implement the
above prototype: eight modules are used for connecting
the various sensors, each one ‘supervising’ the sensors in
the neighbourhood of an array of three by four plants,
one module is sensorless and is used as a communication
relay with the hosting node, and one module is used
for controlling the irrigation system. The sensor nodes are
manually placed however the mapping to the zones is
administered at a higher level in the hosting node (ePlant),
as part of its description. For energy-efficiency and power
consumption considerations, the sensor nodes are reporting
data once per 5 mins. The data collected by the sensor nodes
is gathered by the hosting node, for local processing
and logging. Interaction then is possible between the
hosting node and other devices for managing the delivery
of agricultural input according to local or global decision-
making schemes.

The application business logic is expressed upon a set of
plant parameters, plant states and actions to be performed.
Table 2 illustrates such variables defined in the ontology of
the application.

Table 2 Application business logic variables

Parameters States Action requests

AmbientAvgTemp “Z”DroughtStress “Z”NeedIrrigation
“Z”AvgTemp “Z”HeatStress “Z”NeedMisting
“Z”AvgMoisture

The “Z” prefix in the name of a variable is substituted
by one of the possible zone names of the crop array
(LE, RE, LC, RC). For the NeedMisting variable, the prefix
can be omitted since there is only one zone specified
for misting. Two additional parameters must be defined
for the prototype to be properly working; the duration of
irrigation/misting and an idle time that specifies the amount
of time the rules should be disabled, after the action is
performed. This is to allow the ecosystem to absorb the
changes. The values used for the application were 1 min and
4 hr, respectively.

The actual logic of the prototype is captured in a set of
rules. Table 3 contains the applicable rules for the RC zone.
Rules for evaluating the plant states and actions to be
performed are shown. Confidence Factor (CF) values are
also included. CF values in square brackets are defined by
the domain-expert, while in curly brackets by the system
Inference Engine. The user, for example, can specify a
policy where actions with confidence below 50% should not
be triggered but the user should be notified.

82 C. Goumopoulos et al.

Certainty factors may apply both to facts and to
rules, or rather to the conclusion(s) of rules. Conditions
for rules are formed by the logical ‘and’ and ‘or’ of
a number of facts. The certainty factors associated
with each condition are combined to produce a certainty

factor for the whole condition. For two conditions P1 and
P2, it holds that: CF(P1 and P2) = min(CF(P1), CF(P2))
and CF(P1 or P2) = max(CF(P1), CF(P2)). The combined
CF of the condition is then multiplied by the CF of the rule
to get the CF of the conclusion.

Table 3 Application rules with confidence factors shown

Rule Body
RCDrought Stress
[CF=0.8]

IF RCAvgTemp–AmbientAvgTemp>0.75°C [CF=0.9]
THEN RCDroughtStress TRUE
ELSE RCDroughtStress FALSE {CF=0.72}

RCHeat Stress
[CF=0.9]

IF RCDroughtStress {CF=0.72} AND
RCAvgMoisture>60% [CF=0.9]
{CF=min(0.72, 0.9)=0.72}
THEN RCHeatStress TRUE
ELSE RCHeatStress FALSE {CF=0.65}

RCNeed Irrigation
[CF=1]

IF RCDroughtStress {CF=0.72 } AND NOT
RCHeatStress {CF=0.65 }
{CF=min(0.72, 0.65)=0.65}
THEN RCNeedIrrigation TRUE
ELSE RCNeedIrrigation FALSE {CF=0.65}

Need Misting
[CF=1]

IF RCDroughtStress {CF=0.72 } AND
RCHeatStress {CF=0.65}
{CF=min(0.72, 0.65)=0.65}
THEN NeedMisting TRUE
ELSE NeedMisting FALSE {CF=0.65}

On the agronomic part of the experiment, the
instrumentation of the strawberry field with the wireless
sensor network and the plant-driven irrigation leads to a
notable reduction in water consumption (15–20%)
with respect to traditional agricultural practices involving
user-defined timed irrigation based on rules of thumb.
The latter was applied in a parallel setup for the same
growing period (early development stage) of the crop.
The deployment of smart water management on a large
farming scale is extremely important, given the irrigation
needs of the agricultural sector (irrigation uses up to 80% of
total water in some regions) and the decreasing availability
of water for irrigation.

The use of the PLANTS ontology for the organisation
of concepts and definition of operational semantics has
been successfully tested and revealed the advantages of
this approach. Using PLANTS ontology for defining
application business logic emphasises system flexibility and
adaptability. In that sense, our system architecture can be
regarded as a reflective architecture that can be adapted
dynamically to new requirements.

By specifying the rules structure and semantics in an
ontology that defines various parameter/states types as well
as the arguments that the rules are based on, we can use the
ontology to verify rules validity. This also makes easier
the inclusion of environmental/plant context parameters in
rules, since we know the rules structure and the kinds of
values different arguments can take.

Finally, using ontological descriptions allowed us to
have heterogeneous entities interoperate and interact with

one another in a meaningful way dictated by the domain
under consideration.

6 Related work

Attempts to use environmental sensor networks to improve
crop cultivation by monitoring and reporting on the status of
the field are reported by Burrell et al. (2004), Fukatsu and
Hirafuji (2005) and Zhang et al. (2004). These approaches
provide decision-support to the user who responds by
providing the required treatment. This is in contrast to our
plant-driven distributed management system that imposes a
proactive-computing model for the crop treatment.

The practical issues of building a Ubiquitous Computing
application, called PlantCare, that takes care of houseplants
using a sensor network and a mobile robot are investigated
by LaMarca et al. (2002). The emphasis is given on
discussing technical challenges encountered during the
deployment of the application. Our approach, in contrast,
emphasises the development of an architecture that views
plants and associated computation as an integral part
and allows the interaction of plants and artefacts in the
form of synergistic and scaleable mixed societies.
An ontology-based conceptual model is defined for
composing applications, which ensures a balanced
behaviour both to ambient nature applications where
interactions through high-level concepts and user
empowerment is the focus, and agricultural nature
applications where the integration of a large number of plant

 An ontology-driven system architecture for precision agriculture applications 83

and environmental sensors and the complexity of the
communication and the decision-making processes are the
focal points.

In the biology, botany, organic computing and
bioinformatics domains, there are activities on building
ontologies that partially address principles of PLANTS
(The Plant Ontology Consortium, http://www.
plantontology.org; Sequence Ontology, http://song.
sourceforge.net; Gene Ontology Consortium, http://www.
geneontology.org). These activities aim to develop and
share structured controlled vocabularies for plant-specific
knowledge domains like plant anatomy, temporal stages,
genes and biological sequences. Central to our approach is
the use of an ontology, which provides not just a conceptual
description of the domain knowledge, but furthermore
the use of rules and constraints (axioms) in operational
representation forms allow the use of the ontology for
reasoning providing inferential and validation mechanisms.
The reasoning is based on the definition of the ontology,
which may use simple description logic or user-defined
reasoning using first-order logic.

7 Conclusion and future work

We have been involved with a facet of precision agriculture
that concentrates on plant-driven crop management.
By monitoring soil, crop and climate in a field and
providing a decision-support system, it is possible to deliver
treatments, such as irrigation, fertiliser and pesticide
application, for specific parts of a field in real time and
proactively. In this context, we have presented in this paper
an ontology-driven framework for developing precision
agriculture applications.

Moving our research towards to a more autonomous
system with self-adaptation and self-learning characteristics,
we have been exploring ways of incorporating learning
capabilities in the system. Machine-learning algorithms
(Mitchell, 1997) can be used for inducing new rules by
analysing logged data sets to determine accurately
significant thresholds of plant-based parameters and for
extracting new knowledge and extending the PLANTS
ontology. By providing intelligent decision-making,
we can replace the typical, explicitly coded actions to
situations and conditions (which can only prescribe a
fixed set of predicates) with a multi-level and more
knowledge-intensive decision-making framework coupled
with reasoning under uncertainty and machine-learning
techniques. Both supervised (experimentation-driven or
user-mediation) and non-supervised learning algorithms are
needed for realising the self-regulation properties of
the system that goes beyond the usual distinction of closed
vs. open adaptive systems.

Different ontology-based systems may use different
terms to describe the same concept and may follow different

policies to perform the same task. For example, the name of
plants could be different for different areas or for different
languages. As a consequence, applications and services
developed for one system often cannot be ported in
other systems. One solution is standardisation, though it is
often difficult to achieve. Another solution is to develop
and discover mappings and relationships between
different ontology-based systems, a process called ontology
alignment (Ehrig, 2007). The ontology alignment can be
described as: given two ontologies each describing a set
of discrete entities (which can be classes, properties, rules,
predicates, or even formulas), find the correspondences,
e.g., equivalence or subsumption, holding between these
entities. To make our system available on a larger scale
and adaptable to other systems developed for different
geographical areas with different needs and different
environmental issues, we aim to apply ontology alignment
to find those elements that have the same intended meaning.

Acknowledgement

Part of the research described in this paper was conducted in
the PLANTS project (IST FET Open IST-2001-38900);
the authors thank their fellow researchers in the PLANTS
consortium for their input and support and the anonymous
reviewers for their suggestions for improving this paper.

References
Bellis, S.J., Delaney, K., O’Flynn, B., Barton, J., Razeeb, K.M.

and O’Mathuna, C. (2005) ‘Development of field
programmable modular wireless sensor network nodes for
ambient systems’, Computer Communications – Special Issue
on Wireless Sensor Networks and Applications, Vol. 28,
No. 13, pp.1531–1544.

Burrell, J., Brooke, T. and Beckwith, R. (2004) ‘Vineyard
computing: sensor networks in agricultural production’,
IEEE Pervasive Computing, Vol. 3, No. 1, pp.38–45.

Cassells, A., Goumopoulos, C., Morrissey, A. and Tooke, F.
(2006) ‘New crop of technology reveals plant health’,
ICT Results, http://cordis.europa.eu/ictresults/index.cfm?
section=news&Tpl=article&BrowsingType=Features&ID=81
342

Cranefield, S. and Purvis, M. (1999) ‘UML as an ontology
modelling language’, Proceedings of the Workshop on
Intelligent Information Integration, 16th International
Joint Conference on Artificial Intelligence (IJCAI-99),
Stockholm, Sweden, CEUR Workshop Proceedings, Vol. 23,
pp.46–53.

Drossos, N., Goumopoulos, C. and Kameas, A. (2007)
‘A conceptual model and the supporting middleware
for composing ubiquitous computing applications’, Journal of
Ubiquitous Computing and Intelligence, Vol. 1, No. 2,
pp.174–186.

Ehrig, M. (2007) Ontology Alignment – Bridging the Semantic
Gap, Springer, New York, NY, USA.

84 C. Goumopoulos et al.

Fowler, M. and Scott, K. (1999) UML Distilled Second Edition,
A Brief Guide to the Standard Object Modeling Language,
Addison Wesley, New York, NY, USA.

Fukatsu, T. and Hirafuji, M. (2005) ‘Field monitoring using
sensor-nodes with a web server’, Journal of Robotics and
Mechatronics, Vol. 17, No. 2, pp.164–172.

Goumopoulos, C., Christopoulou, E., Drossos, N. and
Kameas, A. (2004) ‘The PLANTS system: enabling
mixed societies of communicating plants and artefacts’,
Proc. 2nd European Symposium on Ambient Intelligence
(EUSAI 2004), 8–10 November, Springer-Verlag, Eindhoven,
the Netherlands, LNCS Vol. 3295, pp.184–195.

Gruber, R. (1993) ‘A translation approach to portable ontology
specification’, Knowledge Acquisition, Vol. 5, No. 2,
pp.199–220.

Koch, B. and Khosla, R. (2003) ‘The role of precision
agriculture in cropping systems’, Crop Production J., Vol. 8,
pp.361–381.

LaMarca, A., Brunette, W., Koizumi, D., Lease, M.,
Sigurdsson, S.B., Sikorski, K., Fox, D. and Borriello, G.
(2002) ‘PlantCare: an investigation in practical ubiquitous
systems’, Proceedings of the 4th International Conference
on Ubiquitous Computing, Goteborg, Sweden, September,
Springer-Verlag, LNCS, Vol. 2498, pp.316–332.

Mitchell, T.M. (1997) Machine Learning, McGraw-Hill,
New York, NY, USA.

Russell, S. and Norvig, P. (2003) Artificial Intelligence: A Modern
Approach, Pearson Education, Upper Saddle River, NJ, USA.

Uschold, M. and Gruninger, M. (1996) ‘Ontologies: principles,
methods and applications’, Knowledge Engineering Review,
Vol. 11, No. 2, pp.93–155.

Weiser, M. (1991) ‘The computer for the 21st century’,
Scientific American, Vol. 265, No. 3, pp.94–104.

Zhang, W., Kantor, G. and Singh, S. (2004) ‘Demo abstract:
integrated wireless sensor/actuator networks in an agricultural
application’, Proceedings of the 2nd ACM International
Conference on Embedded Networked Sensor Systems
(SenSys), ACM Press, November, Baltimore, Maryland, USA,
p.317.

Websites
Gene Ontology Consortium, at http://www.geneontology.org
Jess – the Rule Engine for the JavaTM Platform, at http://

herzberg.ca.sandia.gov/jess/
PLANTS FET Open project, Enabling Mixed Societies of

Communicating Plants and Artefacts, IST-2001-38900, at
http://cordis.europa.eu/fetch?ACTION=D&CALLER=PROJ_
IST&QM_EP_RCN_A=66398.

Protégé – A Tool for Ontology Development and Knowledge
Acquisition, at http://protege.stanford.edu/

Sequence Ontology, at http://song.sourceforge.net
SWRL: A Semantic Web Rule Language Combining

OWL and RuleML, http://www.w3.org/Submission/2004/
SUBM-SWRL-20040521/

The Plant Ontology Consortium, at http://www.plantontology.org

