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1 Introduction 

Precision agriculture is an agricultural concept relying on 
the existence of in-field variability across an array of 
cropping systems (Koch and Khosla, 2003). Thanks to 
developments in the field of wireless sensor networks as 
well as miniaturisation of sensor systems, new trends have 
emerged in the area of precision agriculture. Wireless 
networks allow the deployment of sensing systems and 
actuation mechanisms at a much finer level of granularity, 
and a more automated implementation than has been 
possible before. Sensors and actuators can be used to 
precisely control for example the concentration of fertiliser 
in soil based on information gathered from the soil itself,  
the ambient temperature, and other environmental factors. 
Incorporating feedback into the system through the use of 
sensors, actuators, and adaptation algorithms will allow a 
more fine-grained analysis that could adjust flow rate  
and duration in a way that is informed by local conditions. 
One can imagine the use of such precise information in 
particularly sensitive high-value crops such as wine grapes, 
citrus fruits and strawberries. 

At present, the information gathered by sensor networks 
deployed in a field are mainly used for monitoring and 
reporting on the status of the crops (Burrell et al., 2004; 
Zhang et al., 2004). However, agricultural environments 
make a good candidate for using proactive-computing 
approaches for applications, which require a faster  
than human response time or which require precise,  
time-consuming optimisation. For example, irrigation is a 
major issue in many farms. An ideal proactive system would 
optimise water usage in different areas of the farm by using 
the water available – particularly where water is a limited, 
shared resource. Being able to water plants more selectively 
and precisely on the basis of individual plant requirements 
and the water available, would reduce water wastage.  
Frost detection and pest detection are other examples of 
applications in agriculture that would benefit from proactive 
approaches. 

Our research has been performed in the context of the 
EU-funded R&D project PLANTS (Cassells et al., 2006).  
In this paper, we describe an ontology-driven architecture 
for developing hybrid systems that can be used in precision 
agriculture applications. A hybrid system consists of  
various entities including software components, hardware 
components (sensors, actuators and controllers), datastores 
(knowledge base, raw data, metadata), biological elements 
(plants) and environmental context. By positioning sensors 
around particular plants, the delivered technology is capable 
of reacting (via actuators) to stimuli (perceived via sensor 
networks), aiming to maintain an optimised plant state and 
support efficient plant growth. 

The remainder of this paper is organised as follows. 
Section 2 presents the background concepts related to 
hybrid systems. We explain the concept of mixed societies 
of communicating plants and artefacts, we identify the 
analogy with a context management process at a high-level  
 
 

system view and we give an illustrative example of the 
interactions between the elements of a mixed society. 
Section 3 discusses the PLANTS ontology requirements 
analysis and design. The main categories of knowledge that 
must be represented in the ontology are specified.  
The ontology is organised hierarchically into the PLANTS 
Core Ontology (encodes general knowledge) and the 
PLANTS Higher Ontology (encodes application-specific 
knowledge). Section 4 presents the core modules of the 
distributed management system, namely PLANTS system. 
First, the architecture is outlined and then the basic modules 
are described. A detailed example application from the 
precision agriculture domain is given in Section 5. Related 
work is discussed in Section 6 and finally the conclusions 
and our future work plans are given in Section 7. 

2 Background 

2.1 Mixed societies of communicating plants  
and artefacts 

It is well known that plants show visible signs (e.g., leaf 
substance and colour), measurable signs (e.g., heat and 
chlorophyll irradiance) and emit volatiles (e.g., stress 
chemicals) that can be measured. These are all elements of 
plant language that we can perceive through technology 
(Goumopoulos et al., 2004). Accordingly, the concept of 
‘communicating plant’ emerges, where a plant, augmented 
with sensors and actuators, provides a report on the specific 
plant status and directly addresses the plant’s requirements. 

The communicating plant fits then well within the vision 
of Ubiquitous Computing (Weiser, 1991) where the virtual 
(computing) space will be seamlessly integrated with our 
physical environment. By giving plants a ‘digital self’, 
plants can communicate their properties in digital space. 
Furthermore, regarding plants as virtual ‘components’, 
which can communicate with other artefacts in the digital 
space, we can shape mixed societies of them. From an 
engineering perspective, a mixed society of communicating 
plants and artefacts can be regarded as a multi-layered, 
hierarchical distributed system, which will globally manage 
the resources of the society, its function(s) and its 
interaction with the environment. 

In Figure 1, the basic elements of such a society are 
shown. The components ePlant, eIrrigation, eFertiliser, 
etc., depicted in the scheme represent in the digital space the 
corresponding physical or tangible entities (hosting nodes). 
These components are generalised by the term eEntity. 
Thus, in principle, an entity in the physical space becomes 
an eEntity in the virtual space by the superimposition  
of a technological layer consisting of hardware/software 
modules that enable it to sense the environment  
(using sensors), act upon it (using actuators), store and 
process data locally and communicate with other eEntities 
or software programmes (e.g., tools) via wireless or internet 
communication links. 
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Figure 1 Basic elements identified in mixed societies of communicating plants and artefacts (see online version for colours) 

 
 
An ePlant component, in particular, may represent  
the digital self either of a specific plant or a group of plants 
(a group may be defined in terms of a specific plant species 
or in terms of plant vicinity, a number of plants in a 
geographical region) and is responsible for the back-end 
computation with respect to the sensor network computing. 
Through a software layer, ePlant communicates with the 
sensor network, implements a decision-making scheme for 
assessing plant states and alarms and handles the interaction 
with other eEntities. 

eEntities that represent domain-specific objects  
with the capabilities of information processing and 
exchange are also called Artefacts or eGadgets.  
These artefacts have the capability of communicating  
with other artefacts based on local networks, as well as 
accessing or exchanging information at a distance via global 
networks. In our case, artefacts may represent expressive 
devices (speakers, displays, etc.), resource-providing 
devices (e.g., lamps, irrigation/fertilisation/shading system) 
or any other everyday object (e.g., cell phone, camera). 

Sensor systems range from standalone sensor devices to 
wireless sensor networks monitoring micro-climates in a 
crop field. Standalone sensor devices may be shared among 
a number of ePlants (e.g., owing to cost constraints) so  
that the context needs to be determined. Wireless sensor 
networks are based on hardware platforms like Mica2, 
Mica2Dot and Intel systems, called motes (Bellis et al., 
2005). On the other hand, the actuator systems will allow 
the plant to influence the environment that it resides in. 

The communication in the distributed system is divided 
into two levels: sensory communication, which refers to the 
communication between an eEntity hosting node and its 
sensor/actuator systems, and the interaction communication, 
which refers to the communication between the eEntities.  
In that way, we separate the interaction services from the 
context of application. 

The interaction of artefacts and ePlants entails the 
triggering of autonomous local decision-making and  
global decision-making procedures. The term local 
decision-making is used when a node can reach a decision  
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based on local knowledge, i.e., does not need to interact 
with other nodes in the distributed system. This is in 
contrast to global decision-making where the nodes of the 
distributed system communicate and exchange data that can 
be used to perceive a global state and trigger a global 
decision. For example, upon determining the local state of a 
plant, a decision may be required for an action to be 
followed. In the case of an artefact (e.g., a lamp or valve), 
the local decision-making (or resource management) 
mechanism resolves conflicts when multiple ePlants  
request a common resource (e.g., light or water).  
Distributed mechanisms can also be considered to alleviate 
similar situations, when ePlants and related artefacts are 
coordinated for detecting/maintaining a global state in the 
context of a group of distributed nodes. 

2.2 Context management process 

At a high level, the process performed by the distributed 
system discussed in Figure 1 can be viewed as a 
plant/environmental context management process. We 
model this process as a measurement-translation-reasoning-
actuation control cycle (Figure 2). A mechanism  
for low-level context acquisition, which reads plant/ 
environmental signals from sensors, starts this cycle. 
Signals range from selected electromagnetic wavelengths 
through to volatile organic molecules. This information is 
probably not initially in a format that can be used by the 
system to make decisions or reach a conclusion. In a second 
phase, the signals are interpreted and high-level context 
information is derived. For example, temperature and soil 
moisture sensors return an analogue signal (voltage value), 
which must be then converted, after a calibration phase, to a 
digital format. This signal conditioning phase is usually 
performed within the motes using specialised Analogue to 
Digital conversion circuitry, implemented in such a way as 
to optimise both network data throughput and system 
battery life, by avoiding unnecessary send/receive messages. 
A mote typically contains a microcontroller equipped with  
in-system memory and can be programmed to handle 
analogue to digital conversion of sensor data. More details 
on this specialised process may be found in Bellis et al. 
(2005). 

Aggregation of context is also possible, meaning that 
semantically richer information may be derived based on the 
fusion of several measurements that come from different 
homogeneous or heterogeneous sensors. The determination 
of photo-oxidative stress, for example, requires monitoring 
of chlorophyll fluorescence in conjunction with ambient 
light level signals so as to adjust supplementary light  
levels. As another example, the determination of water 
stress requires the monitoring of a plant’s leaf temperature, 
the ambient temperature and the soil moisture content.  
The aggregation of context is an operation that is  
performed at the higher levels of the system, usually  
at the hosting node. 
 
 

Figure 2 Plant/environmental context management process 

 

Having acquired the necessary context, we are in a position 
to assess the state of the plant and decide an appropriate 
response activation. Adopting the definition from Artificial 
Intelligence, a state is a logical proposition defined over  
a set of context measurements (Russell and Norvig, 2003). 
This state assessment will be based on a set of rules,  
which are either obtained as part of a time-consuming and 
labour-intensive manual process, or as part of a more 
advanced scheme by utilising learning capabilities within 
the system. The low (sensor) and high (fused) level data, 
their interpretation and the decision-making rules are 
encoded in an ontology. 

The reaction may be as simple as to turn on a light,  
or to send a message to the user, or a composite one such as 
a request to add water directly to the soil in the pot in case 
of drought stress, or as spraying mist in case of heat stress. 
This means that the system has to differentiate between the 
two kinds of water stress and evaluate the appropriate 
response. Such a decision may be based on local context  
or may require context from external sources as well,  
e.g., a weather station supporting prediction of plant disease 
spreading. 

2.3 An interaction example 

In our approach, an application is realised through the 
cooperation of nodes of the distributed system in the form of 
established logical communication links between services 
and capabilities offered by the artefacts and the states  
and behaviours inferred from the plants (in each case 
services/states are provided through access points called 
plugs). The plug/synapse model provides a conceptual 
abstraction that allows the user to describe mixed society 
applications (Drossos et al., 2007). To achieve collective 
desired functionality, one forms synapses by associating 
compatible plugs, thus composing applications using 
eGadgets and ePlants as components. The use of high-level  
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abstractions, for expressing such associations, allows the 
flexible configuration and reconfiguration of mixed society 
applications with the use of appropriate editing tools. 

In Figure 3, we depict a simple mixed society of an 
ePlant associated with an eGadget (eLamp), so that when 
the chlorophyll fluorescence signal of the plant is below a 
certain level, implying a photo-oxidative stress situation,  
the light of the lamp must be turned on to a specific level of 
luminosity, until chlorophyll fluorescence signals indicate 
optimal photosynthetic efficiency again. A synapse has  
been formed between the ‘photo-oxidative stress’ plug of 
the ePlant and the ‘lightswitch’ plug of the eLamp.  
The interaction module that implements the plug/synapse 
model is compatible between the two components and thus 
their interaction is feasible. 

Figure 3 An example of ePlant/eGadget interaction (see online 
version for colours) 

 

In step 1, the biosensor/bioactuator network transforms 
selected plant (chlorophyll fluorescence) or other 
environmental (ambient light intensity) signals into digital 
signals. In step 2, ePlant’s I/O Unit reads the digital signals 
(sensory communication), which will then be interpreted  
to a high-level unit of information, for instance, to an 
aggregated composite signal, and this information  
is transferred to the PLANTS system, which acts as a 
middleware (ePlantOS). In step 3, the context received  
by the middleware is applied to the rules encoded  
in the ontology so that a state of the plant is determined. 
Then, the decision for an action may come in the form of a 
command or a request for a service. The ontology of  
the ePlantOS may specify, for example, the luminosity of 
the requested light, based on the plant species at hand.  
A new context type that is not specified in the current 
ontology will trigger an update of the ontology before it can 
be used into a decision-making rule. In step 4, the system 
passes the information to the connected eGadget through  
the established logical channel (synapse). The connectivity 
and wireless communication layers implement the  
lower layers of the network stack. Finally, in steps 5–7,  
the middleware of the eGadget receives the information  
and acts upon the eGadget by using the eGadget I/O unit 

that in turn activates an actuator through the sensor/actuator 
network. 

3 PLANTS ontology 

3.1 Requirements 

The distributed management system that governs 
plant/artefact societies is closely bound to knowledge  
that must be presented and managed. The knowledge that 
must be represented can be divided into the following 
categories: 

I Mixed societies conceptualisation 

According to Uschold and Gruninger (1996), an ontology  
is a tool that can conceptualise a world view by capturing 
general knowledge and providing basic notions and 
concepts for basic terms. In the same way, we turn to 
ontologies to conceptualise the terms of mixed societies as 
to enable the communication among ePlants and eGadgets. 
For a feasible communication among ePlants and eGadgets, 
a common language and a common perception of their 
world is required. The terms of this common language as 
well as the basic concepts of mixed societies are described 
in the PLANTS ontology. Therefore, the PLANTS ontology 
contains the description of the semantics of the basic terms, 
such as: eGadget, ePlant, Plug, Synapse, Sensor, Actuator 
and bioGadgetWorld (denotes a mixed society), and the 
definition of the relations among them. 

II Plant characterisation 

One of the main objectives is to study plant eco-systems  
to understand sensing and communication mechanisms  
that will be used as models for specification of  
plant–artefact interfacing mechanisms. The knowledge 
emerged from these studies can be divided into various 
categories. 

a Knowledge regarding the plant itself. In this category, 
knowledge such as the name and the species of the 
plant is described. Additionally, this category contains 
knowledge about the growth and the development 
stages of plants. 

b Knowledge regarding plant parameters being 
monitored by sensors. This category contains 
information about the available sensors that can 
monitor the plant parameters as well as relative 
knowledge like the range of values, the threshold values 
and the interpretation of the aforementioned values. 

c Knowledge regarding the implied state of plants.  
This category contains information relevant to the  
plant stressing and sensing mechanisms and the signals 
that plants perceive and send to the environment. 
Specifically, the possible states of a plant implied  
by its parameters monitored by sensors are part of this 
knowledge. For example, the representation of stresses, 
like the water stress, diseases and symptoms, belongs to 
this category of knowledge. 
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d Knowledge regarding environmental parameters.  
The knowledge about the environmental parameters 
that we can measure and monitor is essential to define 
the state of a plant. For example, parameters like the 
temperature, the humidity, CO2, the light and the soil 
moisture play a major role. The description of these 
parameters, their range and threshold values are also 
represented. 

III Sensor and actuator systems characterisation 

The sensors and the actuators play a crucial role in precision 
agriculture applications. In particular, the use of sensors 
requires a description that specifies their type, the parameter 
they measure, the range of their values as well as their 
sensitivity and accuracy. Because we may use different 
sensors for the same plant (or environmental) parameter,  
we design an abstract structure about sensors and using an 
intermediate interpretation connect their outputs to specific 
parameters. This intermediate interpretation allows the 
interfacing with both existing and future sensor systems 
when these become available. 

IV Rules for decision-making 

This category refers to the knowledge that supports the 
decision-making process. This knowledge is represented  
as a set of rules, which are used for various decisions.  
We mention below some of them. 

a Sensors. A design principle of our approach is to 
abstract the system from the real sensors that we are 
using. Specifically, if we assume that a sensor 
measuring the temperature provides to the system a 
value within a specific range, we can use any available 
sensor and with a set of rules we can calculate the  
value that the system recognises from the sensor’s 
outputs. 

b Diagnosis of the plant state. There is a need for a  
set of rules that will take into account both plant and 
environmental parameters and the description of a plant 
to diagnose a plant’s state. 

c Local decision-making. The local decision-making is 
based on a plant’s state and its description and 
determines the possible actions of an ePlant, like the 
request for a resource. Correspondingly, similar rules 
will support the decision-making of an eGadget to 
select a policy for the resource management. 

d Global decision-making process. These rules are 
similar to the rules used by the local decision-making 
process that defines the reaction of an eEntity.  
The main difference is that the rules of the global 
decision-making process have to take into account  
the states of other eEntities and their possible  
reactions. The rules that are activated in the global 
decision-making process are related mainly to  
user-defined policies. 

 
 

3.2 Design 

The PLANTS ontology is designed so that it enables the 
semantically meaningful interaction between plants and 
artefacts via the conceptualisation of plants domain 
knowledge. The PLANTS ontology thus represents the 
necessary knowledge to meet system requirements and 
support its functionalities. 

Since the interoperability among system components 
(ePlants/eGadgets) is based on their ontologies, the 
existence of different ontologies could result in inefficient 
interoperability. An awkward solution to this issue could be 
the merging of all existing ontologies into a global one that 
would inevitably result into a very large knowledge base. 
This solution is undesirable for two reasons: first, it does not 
respect the limited memory capabilities of the artefacts,  
and second, it requires the continuous synchronisation  
of all eEntities. Another solution could be the use of a 
client/server model where all eEntity ontologies are  
stored centrally and each eEntity can have access to it.  
This solution conflicts, however, with the autonomous 
nature of system components. 

We designed the PLANTS ontology, keeping in mind 
the design criteria proposed by Gruber (1993) for efficient 
developing of ontologies: 

• Maximum monotonic extensibility: new general or 
specialised terms can be included in the ontology in 
such a way that it does not require the revision of 
existing definitions. 

• Clarity: terms that are not similar (common-sense  
terms vs. specialised domain ontologies) are placed  
in different taxonomies. 

According to this, the PLANTS ontology is divided into  
the following two different layers: the PLANTS Core 
Ontology (PLANTS-CO) and the PLANTS Higher Ontology 
(PLANTS-HO). The solution that we propose allows each 
eEntity to have a different ontology with the condition that 
all ontologies will be based on a common vocabulary. 
Specifically, the PLANTS Core Ontology will contain the 
common vocabulary, and the PLANTS Higher Ontology 
will represent eEntity-specific knowledge using concepts 
represented into PLANTS-CO. 

Cranefield and Purvis (1999) proposed using a  
subset of the Unified Modelling Language (UML)  
(Fowler and Scott, 1999) together with its associated Object 
Constraint Language (OCL) for representing ontologies.  
In the ontology modelling diagrams presented in this paper, 
we assume the following conventions:  

• ontology classification hierarchy will be expressed by 
UML generalisation, represented by lines with hollow 
arrow heads pointing to the super class 

• class properties will be presented by UML aggregation, 
an association with a diamond at the aggregate end of 
the link. 
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3.3 PLANTS Core Ontology (PLANTS-CO) 

The PLANTS-CO represents the common language among 
eEntities, thus it has to contain all the semantic description 
of the basic concepts of mixed societies and their  
inter-relations. All eEntities share the same PLANTS-CO.  
A key requirement of the PLANTS-CO is to contain only 

the indispensable semantics for the interoperability of 
eEntities to be very small and even eEntities with limited 
memory capacity may store it. The PLANTS-CO is static 
and cannot be changed either by an eEntity manufacturer or 
by a user. In Figure 4, a UML representation of the 
PLANTS-CO basic classes and their inter-relations  
is shown. 

Figure 4 PLANTS-CO: basic classes and their inter-relations 

 
 
In the PLANTS ontology, an artefact will be represented  
as a class, eGadget, which has a number of properties.  
These properties are divided into two categories: the first 
one contains the physical properties, which describe the 
eGadget as a tangible object; the second one contains  
the digital properties, which manifest the digital self of the 
eGadget and the plugs owned by the eGadget and expose its 
services. 

The ePlant concept will be represented as another class 
with its properties. Additionally, the PLANTS ontology will 
describe the digital properties of ePlant, such as its plugs. 

The notion of Plug will be represented in the PLANTS 
ontology as another class. From the user’s perspective, 
plugs make visible the entities’ properties, capabilities and 
services to people and to other entities. Plug cardinality is 
the maximum number of synapses that the plug can 
participate-in and plug availability denotes whether the plug 
can participate in another synapse. Plug-availability is 
determined based on plug-cardinality and the number of 

existing connections a plug has. The Plug class is divided 
into two disjoint subclasses: the TPlug and the SPlug.  
The TPlug describes the physical properties of the object 
that is used as an eGadget or the plant that is used as an 
ePlant and lists all the eEntity’s Plugs and Synapses; there is 
a cardinality restriction that an eEntity must have exactly 
one TPlug. On the other hand, an SPlug represents the 
eEntity properties, capabilities and services; an eEntity has 
exactly one SPlug per service offered and thus can have an 
arbitrary number of SPlugs. SPlugs are characterised by 
their service type, which describes the type of the service 
offered (e.g., ‘light’, ‘temperature’, etc.). 

The Synapse class represents a synapse among two 
plugs (for the plug/synapse logic see the example in  
Section 2.3). A synapse may only appear among two 
SPlugs. The cardinality restriction that stands for a synapse 
is that it represents the connection among only two SPlugs. 
For each SPlug that participates in a synapse, a special role 
will be declared through PLANTS ontology. 
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With the bioGW (bioGadgetWorld) class, the PLANTS 
ontology describes the mixed societies that are created.  
The bioGW properties represent the eGadgets and the 
ePlants contained in a bioGW and the synapses that 
compose it. There are two cardinality constraints: first,  
a bioGW must contain at least two eEntities, and second,  
at least a synapse must exist between their plugs. 

The sensors and the actuators play a significant role in 
the targeted application domain, especially with respect to 
the ePlant concept, thus we incorporate into the PLANTS 
ontology the classes Sensor and Actuator. These classes are 
special cases of the general class Device. For instance,  
a description of sensors defining their type, their 
measurement range and accuracy is provided. 

We have added the concepts Parameter and PlantState 
and we defined that an ePlant may have parameters and 
states. The concept Parameter is further classified into two 
concepts: the Plants Parameters and the Environmental 
Parameters. Each Parameter has a number of properties, 
like minimum value, maximum value, default value,  
the type of its value (e.g., integer, float, Boolean, etc.). 
Additionally, there is a relation between a parameter and the 
sensor that measures it. Both the classes ‘Plants Parameters’ 
and ‘Environmental Parameters’ are divided into subclasses 
that define specific parameters. In Figure 5, we illustrate 
examples of these classes. 

Figure 5 PLANTS-CO: Subclasses of concept ‘Parameter’ 

 

To represent the various plant states, the PLANTS-CO 
contains the concept ‘PlantState’; a state may be activated 
and if it is activated we may use an activation level  
to further define the state of an ePlant. In Figure 6,  
we illustrate subclasses of the PlantState. 
 

Figure 6 PLANTS-CO: Subclasses of concept ‘PlantState’ 

 

3.4 PLANTS Higher Ontology (PLANTS-HO) 

The PLANTS-HO represents both the description of an 
eEntity and its acquired knowledge. These descriptions 
follow the definitions contained in the PLANTS-CO. 
Specifically, the knowledge stored into the PLANTS-HO is 
represented as instances of the classes defined into the 
PLANTS-CO. For example, the PLANTS-CO contains  
the definition of the concept SPlug, while the PLANTS-HO 
contains the description of a specific SPlug represented  
as an instance of the concept SPlug. Consequently, the 
PLANTS-HO is not a standalone ontology, as it does not 
contain the definition of its concepts and their relations. 

Since the PLANTS-HO represents the private 
knowledge of each eEntity, it is different for each eEntity. 
Contrary to PLANTS-CO, which size is required to be small 
enough, the size of PLANTS-HO will depend only on 
eEntity’s memory capacity. Apparently, PLANTS-HO is not 
static and it can change over time without causing 
complications to plants–artefacts communication. To reflect 
the fact that PLANTS-HO contains both static information 
about the eEntity and dynamic information emerged from its 
knowledge and use, PLANTS-HO is divided into the 
PLANTS-HO-static and the PLANTS-HO-volatile. 

The PLANTS-HO-static represents the description  
of an eEntity containing information about the eEntity 
plugs, its sensors and actuators, its parameters and its  
states, as well as its physical characteristics. For example, 
the PLANTS-HO-static of the ‘eStrawberry’ ePlant  
contains the knowledge about the species of ePlant  
(e.g., ‘strawberry’), its parameters (e.g., ‘AvgTemp’ and 
‘AmbientAvgTemp’), its state (e.g., ‘DroughtStress’) and its 
SPlug (e.g., ‘Need_Irrigation’). 

On the other hand, the PLANTS-HO-volatile of an 
eEntity contains information derived from its use and 
acquired knowledge. Specifically, it describes the synapses  
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to which the eEntity plugs are connected to, the applications 
to which it takes part, as well as information about the 
capabilities of other eEntities that has acquainted through 
communication. The PLANTS-HO-volatile is updated 
during the eEntity’s various activities, like the establishment 
of a new synapse. 

4 PLANTS system architecture 

The deployment of mixed societies is supported by  
the PLANTS system whose architecture is composed  
of a few basic modules that are briefly explained in this 
section. The outline of the system architecture is shown  
in Figure 7. 

Figure 7 System architecture outline 

 

The Process Manager is the coordinator module of the 
system and the main function of this module is to monitor 
and execute the reaction rules defined by the supported 
applications. These rules define how and when the 
infrastructure should react to changes in the environment. 
The Hardware State Manager maintains a repository of the 
hardware environment (sensors/actuators) inside PLANTS 
system reflecting at each particular moment the state of  
the hardware. The Interaction module implements the 
interaction scheme between plants and artefacts, in the  
form of the Plug/Synapse model. The Peer-to-Peer 
Communication Module is responsible for application-level 
communication and interaction between the various eEntity 
nodes. This module implements algorithms and protocols 
for wireless, connectionless communication (using the 
802.11 b/g protocol) as well as mechanisms for internal 
diffusion of the information exchanged. 

The Ontology Manager module has been defined for the 
manipulation of the knowledge represented into the 
PLANTS ontology and to provide the other modules of the 
system with parts of this knowledge with a level of 
abstraction. This means that only the Ontology Manager 
needs to understand PLANTS Ontology and be able to  
use it; all other system modules can query the Ontology 
Manager (through the Process Manager) for the information 
that they need without any knowledge about the ontology 
language and its structure. Therefore, any changes that may 
be done to the PLANTS Ontology affect only the Ontology 
Manager and the rest of the system is isolated from them. 
The Ontology Manager provides methods that query  
 

PLANTS ontology for the definition of specific concepts,  
and for the existing instances of specific concepts, like the 
environmental parameters. The Ontology Manager is also 
responsible for the addition of knowledge into the PLANTS 
ontology. For example, when a new Synapse is established 
between two Plugs, the relevant knowledge must be added 
to the PLANTS ontology. 

The Rule Manager is the mechanism that manages  
the rule base of an eEntity, and its basic functionality  
is to provide to the other modules the rules that define an 
eEntity’s logical operation. The basic operations of the Rule 
Manager are to query about the rules of an eEntity and to 
update them. For the initialisation of the decision-making 
process apart from the rules, the initial facts are necessary 
that represent low-level environmental/plant context sensor 
measurements or inferred plant states. In this respect, the 
Rule Manager is also responsible for the creation of the 
initial facts of a specific eEntity. For example, an initial  
fact is the definition of the existence of the eEntity with  
its specific parameters, states and SPlugs (reactions) that 
participate in its rules. To create this initial fact, the Rule 
Manager needs to have knowledge about the eEntity that is 
stored in the PLANTS-HO-static. For this, it queries the 
Ontology Manager through the Process Manager for any 
information that it needs, like what are the parameters, the 
states and the SPlugs of the eEntity. 

The Inference Engine is the module of the  
system architecture that supports the decision-making 
process. This module exploits the Jess rule engine (Java 
Expert System Shell) (http://herzberg.ca.sandia.gov/jess/). 
The execution of this module is started based on the  
initial facts (defined by the Rule Manager from knowledge 
emerged from the PLANTS ontology through the  
Ontology Manager) and the rules stored in the rule base.  
The Inference Engine module is informed for all the 
changes of parameters values from sensor measurements 
through the Hardware State Manager. When the Inference 
Engine is informed for such a change, it runs all its rules. 
When a rule is activated, the Inference Engine informs for 
the activation of this rule and for the knowledge that is 
inferred the Process Manager that is responsible to transfer 
this knowledge to any module that needs it. 

Regarding the Rule Base, currently the rules are stored 
in a file in Jess format and the concepts that appear are 
emerged from the PLANTS ontology. This is an approach 
of building rules on top of ontologies. Additionally, we have 
also stored the rules in a simple XML-like format that we 
have designed targeting to a simpler manipulation of rules 
from various tools. Our target is to use the Semantic  
Web Rule Language (http://www.w3.org/Submission/2004/ 
SUBM-SWRL-20040521/) for the representation of the 
rules, which is an other approach that specifies an ontology 
for rule syntax. 

The specification of the PLANTS ontology was 
performed using the Protégé ontology development tool 
(http://protege.stanford.edu/) based on the OWL standard 
language. 
 



 An ontology-driven system architecture for precision agriculture applications 81 

5 Example application 

The example application described in this section is 
composed of a strawberry plant where the plant  
is controlling irrigation and supplementary light. Irrigation 
is applied according to the specific requirements of the 
plants in different parts of the crop array, thus illustrating 
the precision delivery of agricultural inputs. 

5.1 Plant/environmental parameters 

The plant/environmental parameters explored for the 
application development are: Plants’ leaf Temperature  
(PT), Chlorophyll Fluorescence (CF), Ambient Temperature 
(AT), Ambient Light (AL) and Soil Moisture (SM).  
For each signal, a different type of sensor is required.  
Table 1 summarises the signals and the corresponding 
sensors used as well as the associated knowledge that will 
be stored in the PLANTS ontology for supporting the 
monitoring and decision-making process. 

Table 1 Plant/environmental signals and sensors 

Signal 
Measuring 
sensor  State assessment Possible actions 

CF PAM meter1 Photo-oxidative 
stress; 
photosynthetic 
efficiency 

Light control; 
estimate/adapt threshold 
values for providing 
input resources 

PT Thermistor  Drought stress; 
heat stress 

Irrigation/misting 

SM Probe EC-102 Drought stress Irrigation 
AT Thermistor    
AL PAR meter3 Photo-oxidative 

stress 
Light control 

1Junior PAM, Gademann Instruments: 
http://www.gademann.com/ 
2ECHO probe model EC-10: 
http://www.ech2o.com/specs.html 
3Skye SKP215 Quantum Sensor:  
http://www.alliance-technologies.net 

Heat stress can occur independently of water stress when 
the ambient environmental temperature gets very high and 
plant transpiration cannot maintain leaf cooling. Therefore, 
if the plant has adequate water (determined by the SM 
probe) but the plant temperature is high this means that it is 
heat-stressed and requires misting to cool it. However, if the 
temperature is high and the moisture content low, then pot 
irrigation is required. The CF and AL parameters are used to 
determine photo-oxidative stress and adjust supplementary 
light. 

5.2 Prototype setup and evaluation 

The prototype setup consists of an array of 96 plants placed 
in a glasshouse, arranged in an array of 12 by 8. The setup 
consists of four different zones: Left-Edge (LE), Right-Edge 
(RE), Left-Centre (LC), Right-Centre (RC) and also one 
zone specified for misting, which coincides with the RC 

zone. The setup integrates the thermistors and soil moisture 
probes into one system that can irrigate when required and 
also determine when to stop the irrigation. This deployment 
takes into account differences in the location of the plants in 
the overall area and will allow for independent irrigation  
of edge or centre zone plants as required. Each zone  
can be controlled using individual solenoids. Misting can  
be applied only to the RC owing to infrastructure 
limitations. 

A total of ten motes are required to implement the  
above prototype: eight modules are used for connecting  
the various sensors, each one ‘supervising’ the sensors in 
the neighbourhood of an array of three by four plants,  
one module is sensorless and is used as a communication 
relay with the hosting node, and one module is used  
for controlling the irrigation system. The sensor nodes are 
manually placed however the mapping to the zones is 
administered at a higher level in the hosting node (ePlant), 
as part of its description. For energy-efficiency and power 
consumption considerations, the sensor nodes are reporting 
data once per 5 mins. The data collected by the sensor nodes 
is gathered by the hosting node, for local processing  
and logging. Interaction then is possible between the  
hosting node and other devices for managing the delivery  
of agricultural input according to local or global decision-
making schemes. 

The application business logic is expressed upon a set of 
plant parameters, plant states and actions to be performed. 
Table 2 illustrates such variables defined in the ontology of 
the application. 

Table 2 Application business logic variables 

Parameters States Action requests 

AmbientAvgTemp “Z”DroughtStress “Z”NeedIrrigation 
“Z”AvgTemp “Z”HeatStress “Z”NeedMisting 
“Z”AvgMoisture   

The “Z” prefix in the name of a variable is substituted  
by one of the possible zone names of the crop array  
(LE, RE, LC, RC). For the NeedMisting variable, the prefix 
can be omitted since there is only one zone specified  
for misting. Two additional parameters must be defined  
for the prototype to be properly working; the duration of 
irrigation/misting and an idle time that specifies the amount 
of time the rules should be disabled, after the action is 
performed. This is to allow the ecosystem to absorb the 
changes. The values used for the application were 1 min and 
4 hr, respectively. 

The actual logic of the prototype is captured in a set of 
rules. Table 3 contains the applicable rules for the RC zone. 
Rules for evaluating the plant states and actions to be 
performed are shown. Confidence Factor (CF) values are 
also included. CF values in square brackets are defined by 
the domain-expert, while in curly brackets by the system 
Inference Engine. The user, for example, can specify a 
policy where actions with confidence below 50% should not 
be triggered but the user should be notified. 
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Certainty factors may apply both to facts and to  
rules, or rather to the conclusion(s) of rules. Conditions  
for rules are formed by the logical ‘and’ and ‘or’ of  
a number of facts. The certainty factors associated  
with each condition are combined to produce a certainty 

factor for the whole condition. For two conditions P1 and 
P2, it holds that: CF(P1 and P2) = min(CF(P1), CF(P2)) 
and CF(P1 or P2) = max(CF(P1), CF(P2)). The combined 
CF of the condition is then multiplied by the CF of the rule 
to get the CF of the conclusion. 

Table 3 Application rules with confidence factors shown 

Rule Body 
RCDrought Stress 
[CF=0.8] 

IF RCAvgTemp–AmbientAvgTemp>0.75°C [CF=0.9] 
THEN RCDroughtStress  TRUE 
ELSE RCDroughtStress  FALSE {CF=0.72} 

RCHeat Stress 
[CF=0.9] 

IF RCDroughtStress {CF=0.72} AND 
RCAvgMoisture>60% [CF=0.9] 
{CF=min(0.72, 0.9)=0.72} 
THEN RCHeatStress  TRUE 
ELSE RCHeatStress  FALSE {CF=0.65} 

RCNeed Irrigation 
[CF=1] 

IF RCDroughtStress {CF=0.72 } AND NOT 
RCHeatStress {CF=0.65 } 
{CF=min(0.72, 0.65)=0.65} 
THEN RCNeedIrrigation  TRUE 
ELSE RCNeedIrrigation  FALSE {CF=0.65} 

Need Misting 
[CF=1] 

IF RCDroughtStress {CF=0.72 } AND 
RCHeatStress {CF=0.65} 
{CF=min(0.72, 0.65)=0.65} 
THEN NeedMisting  TRUE 
ELSE NeedMisting  FALSE {CF=0.65} 

 
On the agronomic part of the experiment, the 
instrumentation of the strawberry field with the wireless 
sensor network and the plant-driven irrigation leads to a 
notable reduction in water consumption (15–20%)  
with respect to traditional agricultural practices involving 
user-defined timed irrigation based on rules of thumb.  
The latter was applied in a parallel setup for the same 
growing period (early development stage) of the crop.  
The deployment of smart water management on a large 
farming scale is extremely important, given the irrigation 
needs of the agricultural sector (irrigation uses up to 80% of 
total water in some regions) and the decreasing availability 
of water for irrigation. 

The use of the PLANTS ontology for the organisation  
of concepts and definition of operational semantics has  
been successfully tested and revealed the advantages of  
this approach. Using PLANTS ontology for defining 
application business logic emphasises system flexibility and 
adaptability. In that sense, our system architecture can be 
regarded as a reflective architecture that can be adapted 
dynamically to new requirements. 

By specifying the rules structure and semantics in an 
ontology that defines various parameter/states types as well 
as the arguments that the rules are based on, we can use the 
ontology to verify rules validity. This also makes easier  
the inclusion of environmental/plant context parameters in 
rules, since we know the rules structure and the kinds of 
values different arguments can take. 

Finally, using ontological descriptions allowed us to 
have heterogeneous entities interoperate and interact with  
 
 

one another in a meaningful way dictated by the domain 
under consideration. 

6 Related work 

Attempts to use environmental sensor networks to improve 
crop cultivation by monitoring and reporting on the status of 
the field are reported by Burrell et al. (2004), Fukatsu and 
Hirafuji (2005) and Zhang et al. (2004). These approaches 
provide decision-support to the user who responds by 
providing the required treatment. This is in contrast to our 
plant-driven distributed management system that imposes a 
proactive-computing model for the crop treatment. 

The practical issues of building a Ubiquitous Computing 
application, called PlantCare, that takes care of houseplants 
using a sensor network and a mobile robot are investigated 
by LaMarca et al. (2002). The emphasis is given on 
discussing technical challenges encountered during the  
deployment of the application. Our approach, in contrast, 
emphasises the development of an architecture that views 
plants and associated computation as an integral part  
and allows the interaction of plants and artefacts in the  
form of synergistic and scaleable mixed societies.  
An ontology-based conceptual model is defined for 
composing applications, which ensures a balanced 
behaviour both to ambient nature applications where 
interactions through high-level concepts and user 
empowerment is the focus, and agricultural nature 
applications where the integration of a large number of plant  
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and environmental sensors and the complexity of the 
communication and the decision-making processes are the 
focal points. 

In the biology, botany, organic computing and 
bioinformatics domains, there are activities on building 
ontologies that partially address principles of PLANTS  
(The Plant Ontology Consortium, http://www. 
plantontology.org; Sequence Ontology, http://song. 
sourceforge.net; Gene Ontology Consortium, http://www. 
geneontology.org). These activities aim to develop and 
share structured controlled vocabularies for plant-specific 
knowledge domains like plant anatomy, temporal stages, 
genes and biological sequences. Central to our approach is 
the use of an ontology, which provides not just a conceptual 
description of the domain knowledge, but furthermore  
the use of rules and constraints (axioms) in operational 
representation forms allow the use of the ontology for 
reasoning providing inferential and validation mechanisms. 
The reasoning is based on the definition of the ontology, 
which may use simple description logic or user-defined 
reasoning using first-order logic. 

7 Conclusion and future work 

We have been involved with a facet of precision agriculture 
that concentrates on plant-driven crop management.  
By monitoring soil, crop and climate in a field and 
providing a decision-support system, it is possible to deliver 
treatments, such as irrigation, fertiliser and pesticide 
application, for specific parts of a field in real time and 
proactively. In this context, we have presented in this paper 
an ontology-driven framework for developing precision 
agriculture applications. 

Moving our research towards to a more autonomous 
system with self-adaptation and self-learning characteristics, 
we have been exploring ways of incorporating learning 
capabilities in the system. Machine-learning algorithms 
(Mitchell, 1997) can be used for inducing new rules by 
analysing logged data sets to determine accurately 
significant thresholds of plant-based parameters and for 
extracting new knowledge and extending the PLANTS 
ontology. By providing intelligent decision-making,  
we can replace the typical, explicitly coded actions to 
situations and conditions (which can only prescribe a  
fixed set of predicates) with a multi-level and more 
knowledge-intensive decision-making framework coupled 
with reasoning under uncertainty and machine-learning 
techniques. Both supervised (experimentation-driven or 
user-mediation) and non-supervised learning algorithms are 
needed for realising the self-regulation properties of  
the system that goes beyond the usual distinction of closed 
vs. open adaptive systems. 

Different ontology-based systems may use different 
terms to describe the same concept and may follow different  
 
 
 
 

policies to perform the same task. For example, the name of  
plants could be different for different areas or for different 
languages. As a consequence, applications and services  
developed for one system often cannot be ported in  
other systems. One solution is standardisation, though it is 
often difficult to achieve. Another solution is to develop  
and discover mappings and relationships between  
different ontology-based systems, a process called ontology 
alignment (Ehrig, 2007). The ontology alignment can be 
described as: given two ontologies each describing a set  
of discrete entities (which can be classes, properties, rules, 
predicates, or even formulas), find the correspondences, 
e.g., equivalence or subsumption, holding between these 
entities. To make our system available on a larger scale  
and adaptable to other systems developed for different 
geographical areas with different needs and different 
environmental issues, we aim to apply ontology alignment 
to find those elements that have the same intended meaning. 
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